Philips CertaFlux
DLM Slim
Published versions
August 2021 First version

Updated since previous version
Merge of Linear DIG with Spot & Downlight DIG
Contents

1. Introduction to this guide .. 4
 Information and support ... 4
 Determine which documents contain what information ... 4

2. Warnings and instructions .. 5
 Safety warnings and installation instructions 5
 Design-in phase ... 5
 Manufacturing phase .. 5
 Installation and service for luminaires 5
 Incorporating the CertaFlux DLM Slim module 5
 Philips Design-in support .. 5

3. Introduction to CertaFlux DLM Slim module 6
 Application Information ... 6
 Choosing the Correct CertaFlux DLM Slim module 6
 Naming of the CertaFlux DLM Slim module 6
 Emergency Application .. 6

4. Optical design-in ... 7
 CertaFlux DLM Slim module address 7
 the issue of binning .. 7
 Color consistency (SDCM) 7
 Starting characteristics ... 7
 Lumen maintenance ... 7
 Light distribution and secondary optics 8

5. Mechanical design-in ... 9
 About the CertaFlux DLM Slim module 9
 Mechanical fixation .. 9
 CertaFlux DLM Slim module dimensions 9

6. Thermal design-in .. 10
 Optimum performance ... 10
 Test requirements .. 10
 Critical measurement points 11
 Tc-lifetime ... 11

7. Electrical design-in and flexibility 12
 Connecting the module ... 12
 Class I and Class II ... 12

8. Compliance and approval .. 13
 Safety ... 13
 Environmental ... 13
 Approval .. 13
 IEC recommendations ... 14
 Photobiological safety aspects 14
 Radiance-based ... 14
 Irradiance-based .. 14
 Humidity .. 15
 Exposure to direct sunlight 15
 Vibration and shocks .. 15
 IP codes, dust and moisture protection 15
 Philips CertaFlux DLM Slim module is to be used for indoor applications 15
 Glow-wire test ... 15
 End-of-life behavior ... 15
 CertaFlux DLM Slim module disposal 16
 Chemical Compatibility .. 16
 Environmental .. 18
 Cautions ... 18

9. Contact details .. 19
 Philips CertaFlux DLM Slim systems 19
 Philips ESD support ... 19

10. Disclaimer .. 20
1. Introduction to this guide

Thank you for choosing CertaFlux DLM Slim module. In this guide you will find the information you require to design a luminaire based on these modules. As LED technology is continuously improving, we advise you to visit our website: www.lighting.philips.com.sg/oem-sg for latest details.

Information and support
If you require any further information or support please consult your local Philips office. The Philips Design-in Team is also available to support you and you can contact with them via your local Philips representative.

Determine which documents contain what information
In order to provide information in the best possible way, Philips' philosophy on product documentation is the following.

- Commercial leaflet contains product family information & system combinations (compatible Philips drivers and Rsets)
- Datasheet contains the module specification
- Design-In Guide describes how to design-in the products

All these documents can be found on the download page of the OEM website www.lighting.philips.com.sg/oem-sg If you require any further information or support please consult your local Philips office.
2. Warnings and instructions

Safety warnings and installation instructions
To be taken into account during design-in and manufacturing.

Design-in phase
• Provide adequate environmental protection
• Avoid contamination (direct or indirect) from any incompatible chemicals reacting with the silicone. A list of incompatible chemicals is provided in the chapter for Compliance and Approval.
• Please use screw to fix the module and do not open module

Manufacturing phase
• Do not use products in case the LEDs are dislodged or if the housing is broken
• Do not drop the CertaFlux DLM Slim or damage in any way.
• Avoid contamination (direct or indirect) from any incompatible chemicals reacting with the silicone. A list of incompatible chemicals is provided in the chapter for Compliance and Approval.

Installation and service for luminaires incorporating the CertaFlux DLM Slim module
• Do not service the luminaire when the mains voltage is connected

Philips Design-in support
Is available; please contact your Philips sales representative.
3. Introduction to CertaFlux DLM Slim module

Application Information
CertaFlux DLM Slim is to provide a good LED solution in general lighting. This range product offers longer life time & efficient lighting solution for residential and commercial application. It is consistent with other CertaFlux Downlight families of modules, delivering simple selection of lighting solution in one system. It also provides easy designs via easy wiring/assembly.

In this guide you will find the specific information required to develop a luminaire based on CertaFlux DLM Slim module. Product specific data can be found in the associated datasheet on www.lighting.philips.com.sg/oem-sg.

Choosing the Correct CertaFlux DLM Slim module
CertaFlux DLM Slim is available with 3 lumen (600/1000/2000lm) and 4 CCTs (830/840/850/865) for options. Please refer to the datasheet for details about each SKU. For system combinations, please check Commercial leaflet.

Naming of the CertaFlux DLM Slim module
The names of the modules are defined as shown in the example below:
CertaFlux DLM Slim 1000lm 830 4" G2

CertaFlux Our brand name for quality, value of money and reliable LED lighting
DLM Downlight module
Slim Slim module design
1000 lumen package
830 CCT and CRI
4" Indicate for 4 inch downlight application
G2 Second generation

Emergency Application
CertaFlux DLM Slim is not recommended work with Emergency systems.
4. Optical design-in

CertaFlux DLM Slim module address the issue of binning
High-quality LED light is achieved by mixing the light of various LEDs. High quality white light is characterized by a good color consistency and a color rendering of >80, popular CCTs in downlight applications of 3000/4000/5000/6500K. The Optimized diffuser gives uniform light.

Color consistency (SDCM)
The current specification of the CertaFlux DLM Slim module for color consistency is 6 SDCM at 0 hours. SDCM stands for Standard Deviation of Color Matching and the value 6 refers to the size of an ellipse around the black body locus.

Starting characteristics
The CertaFlux DLM Slim modules can be switched on in milliseconds, which is a general characteristic of LEDs.

Lumen maintenance
L70B50 @ 25,000 hours
The quality of the CertaFlux DLM Slim portfolio is backed by the Philips’ claim of B50L70 @ 25,000 hours. This means that at 25,000 hours of operation at least 50% of the LEDs’ population will emit at least 70% of its original amount of lumens. This is contrary to conventional light sources, where some time after Service Life Hours the conventional light source emits no light at all. In this section the example graphs show the estimated lumen depreciation curves for different percentage of the population and at nominal Tc temperatures. The actual data for the DLM Slim modules can be found in the associated datasheet at www.lighting.philips.com.sg/oem-sp

Average rated life is based on engineering data testing and probability analysis. The CertaFlux DLM Slim modules are specified to reach L70B50 for the nominal specifications.
Light distribution and secondary optics
The CertaFlux DLM Slim module generates a lambertian beam shape; the polar intensity diagrams for each module are given in the datasheets. The lambertian light distribution enables a simple downlight luminaire design with good uniformity.
5. Mechanical design-in

About the CertaFlux DLM Slim module
Do not open CertaFlux DLM Slim module during the mechanical design-in as CertaFlux DLM Slim module is a highly integrated module.

Mechanical fixation
Please note the right connection between module and driver. The brown wire from module indicate the positive while blue wire indicate the negative. Strain relief is also necessary to protect the wiring between module and driver.

Installation Guide
Additional installation guide can be downloaded from our website www.lighting.philips.com.sg/oem-sg

CertaFlux DLM Slim module dimensions
3D CAD files can be downloaded from our website www.lighting.philips.com.sg/oem-sg
Basic dimensions for each module can also be found in the datasheets which are also available at the before mentioned website.
6. Thermal design-in

The critical thermal management points for the LED module are set out in this chapter in order to facilitate the design-in of CertaFlux DLM Slim module. If these thermal points are taken into account, this will help to ensure optimum performance and lifetime of the LED system.

Optimum performance
To ensure optimum performance, the CertaFlux DLM Slim module must operate within specified temperature limits.

Test requirements
Measurements, e.g. of temperature, luminous flux and power, are reliable once the luminaire is thermally stable, which may take between 0.5 and 2 hours, and is defined as at least 3 readings of light output and electrical power over a period of 30 minutes taken 15 minutes apart with stability less than 0.5%. The time depends on the thermal capacity of the luminaire (see also the relevant clauses in IEC 60598-1).

Note:
Thermal stability can be considered if the temperature changes are less than 1°C over three measurements taken 15 minutes apart. Measurements must be performed using thermocouples that are firmly glued to the surface (and not, for example, secured with adhesive tape).
Critical measurement points
Because LEDs are temperature sensitive, LED modules require a different approach with respect to the maximum permissible component temperature. This is different to most other types of conventional light sources.

For LEDs the junction temperature is the critical factor for operation. Since there is a direct relation between the case temperature and the LED junction temperature, it is sufficient to measure the casing of the LED module at its critical point. The critical point is on the rear surface of the LED module, as shown in the figure on the left. If the case temperature (Tc) at the critical measurement point exceeds the recommended Tc temperature, the performance of the LEDs will be adversely affected, for example in terms of light output, lifetime or lumen maintenance.

Tc-lifetime
At Tc-lifetime all the specifications mentioned in CertaFlux DLM Slim module commercial leaflet, datasheets and design-in guide are valid and a 2 year warranty is applicable.
7. Electrical design-in and flexibility

Connecting the module
Please note the right connection between module and driver. The brown wire from module indicate the positive while blue wire indicate the negative. Strain relief is also necessary to protect the wiring between module and driver.

Class I and Class II
CertaFlux DLM Slim module can only support Class II luminaire design. CertaFlux DLM Slim module must connect with 'SELV' driver.
8. Compliance and approval

CertaFlux DLM Slim module comply with following norms and standards:

Safety
- IEC/EN 62031: LED modules for general lighting - safety specifications
- IEC 62471/62778: Photo biological safety of lamps and lamp systems

Environmental

Approval
- CB/CE/CQC
- Working voltage at which the insulation is designed for 60V

IEC recommendations
The general recommendations for luminaire design given by the IEC (IEC 60598) and the national safety regulations are also applicable to LED-based luminaires.
Photobiological safety aspects

As of March 2007, LEDs and LED-based products for general lighting are no longer included in the scope of the Eye Safety standard for lasers, IEC 60825-1 ‘Safety of laser products’. The new lamp standard, IEC 62471 ‘Photo biological safety of lamps and lamp systems’, which covers incoherent light sources, now applies. This international standard gives guidance on evaluating the photo biological safety of lamps and lamp systems including luminaires. It specifically defines the exposure limits, reference measurement technique and classification scheme for the evaluation and control of photo biological hazards from all electrically powered incoherent broadband sources of optical radiation, including LEDs but excluding lasers, in the wavelength range from 200 nm to 3000 nm.

In the photo biological safety standard, hazard categories are defined as follows:

Radiance-based
- Blue Light (LB) 300 – 700 nm
- Retinal Thermal (LR) 380 – 1400 nm

Irradiance-based
- Actinic UV Skin & Eye (ES) 200 – 400 nm
- Eye UVA (EUVA) 315 – 400 nm
- Thermal skin* (EH) 380 – 3000 nm
- Eye IR (EIR) 780 – 3000 nm

* Thermal skin is not defined in IEC 62471 and hence cannot be classified in risk groups.

CertaFlux DLM Slim module gave the following results. The following should be taken into account:

- The effective radiance measurement for Blue Light (LB) modules is ‘RG1’. Final assessment of the luminaire is recommended.
Humidity
CertaFlux DLM Slim module can withstand a high humidity (90% rh) environment.

Exposure to direct sunlight
Exposure to direct sunlight during operation may have severe temperature or UV effects.

Vibration and shocks
Shock resistance: 30 g @18 ms semi-sinusoidal.
Vibration resistance: sweep 10–50 Hz, one hour at resonance frequency (all 3 axes) without failure.

IP codes, dust and moisture protection
CertaFlux DLM Slim module has IP 20 classification. The OEM is responsible for proper IP classification and approbation of the luminaire.

Philips CertaFlux DLM Slim module is to be used for indoor applications
When used in a non-weather protected environment, additional measures shall be taken to protect the CertaFlux DLM Slim module from water ingress.

Glow-wire test
Philips CertaFlux DLM Slim module conforms to the 650-degree glow-wire test. Reference test: According to additional national deviations for clause 13.3 (Annex 2c of EN 60598-1). An exception is made for France, where local regulations are more strict.

End-of-life behavior
Unlike typical conventional light sources, LEDs are not subject to sudden failure or burnout. There is no time at which the light source will cease to function. Instead, the performance of LEDs shows gradual degradation over time. When used according to specification, CertaFlux DLM Slim module is predicted to deliver an average of 70% of their initial intensity after 25,000 hours of operation. The life of the system is therefore more dependent on the other electronic system components and soldering methods.
CertaFlux DLM Slim module disposal
We recommend that the CertaFlux DLM Slim module or its components are disposed of in an appropriate manner at the end of their (economic) lifetime. The modules are essentially normal pieces of electronic equipment containing components that at present are not considered to be harmful to the environment and can be disposed of with normal care. We therefore recommend that these parts are disposed of as normal electronic waste, in accordance with local regulations.

Chemical Compatibility
The CertaFlux DLM Slim module makes use of LEDs containing a silver-finished (Ag) Lead frame. The lead frame finish is sensitive to pollution and or corrosion when exposed to Oxygen and certain Volatile Organic Components [VOCs]. Examples of VOCs are substances containing Sulfur or Chlorine. In that case parts of the lead frame may blacken, which will impair the lumen output or the color point of the LED light. Materials that are known to have a higher risk to be a source of Sulfur and Chlorine are for example rubbers used for cables & cable entries, sealing’s or corrugated carton. Also do NOT use adhesives, cleaning agents, coatings containing suspect VOCs. Nor use the product in aggressive (corrosive) environments that may cause damage to the LED’s.

We recommend ensuring that the direct environment of these LEDs in the luminaire does not contain materials that can be a source of Sulfur or Chlorine, for optimal reliability of the LED, LED module and/or LED luminaire. Furthermore, make sure that the products with these LEDs are not stored or used in vicinity of sources of Sulfur or Chlorine, and the production environment is also free of these materials. Also avoid cleaning of the LED products with these types of LEDs with abrasive substances, brushes or organic solvents like Acetone and TCE.

Applications of the product in industry and heavy traffic environment should be avoided in case of risk of ingress of Sulfur and Chlorine from the environment.
A list of chemicals, often found in electronics and construction materials for luminaires that should be avoided, is provided in the table below. Note that Philips does not warrant that this list is exhaustive since it is impossible to determine all chemicals that may affect LED performance. These chemicals may not be directly used in the final products but some of them may be used in intermediate manufacturing steps (e.g. cleaning agents). Consequently, trace amounts of these chemicals may remain on (sub) components, such as heat sinks. It is recommended to take precautions when designing your application.

In case of questions on compatibility of materials or applications of the product please contact your Philips representative for application support.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Normally used as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetic acid</td>
<td>Acid</td>
</tr>
<tr>
<td>Hydrochloric acid</td>
<td>Acid</td>
</tr>
<tr>
<td>Nitric acid</td>
<td>Acid</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>Acid</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Alkali</td>
</tr>
<tr>
<td>Potassium hydroxide</td>
<td>Alkali</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>Alkali</td>
</tr>
<tr>
<td>Acetone</td>
<td>Solvent</td>
</tr>
<tr>
<td>Benzene</td>
<td>Solvent</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>Solvent</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Solvent</td>
</tr>
<tr>
<td>MEK (Methyl Ethyl Ketone)</td>
<td>Solvent</td>
</tr>
<tr>
<td>MiBK (Methyl Isobutyl Isobutyl Ketone)</td>
<td>Solvent</td>
</tr>
<tr>
<td>Mineral spirits (turpentine)</td>
<td>Solvent</td>
</tr>
<tr>
<td>Tetrachloromethane</td>
<td>Solvent</td>
</tr>
<tr>
<td>Toluene</td>
<td>Solvent</td>
</tr>
<tr>
<td>Xylene</td>
<td>Solvent</td>
</tr>
<tr>
<td>Castor oil</td>
<td>Oil</td>
</tr>
<tr>
<td>Lard</td>
<td>Oil</td>
</tr>
<tr>
<td>Linseed oil</td>
<td>Oil</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Oil</td>
</tr>
<tr>
<td>Silicone oil</td>
<td>Oil</td>
</tr>
<tr>
<td>Halogenated hydrocarbons (containing F, Cl, Br elements)</td>
<td>MISC</td>
</tr>
<tr>
<td>Rosin flux</td>
<td>Solder flux</td>
</tr>
<tr>
<td>Acrylic tape</td>
<td>Adhesive</td>
</tr>
<tr>
<td>Cyanoacrylate</td>
<td>Adhesive</td>
</tr>
</tbody>
</table>
Environmental
The product is compliant with European Directive 2011/65/EC on Restriction of the Use of Certain Hazardous Substances in electrical and electronic equipment (RoHS2).

Cautions
During storage and transportation
• Store in a dark place. Do not expose to sunlight.
• Maintain temperature between -40 ~ +65 °C, and RH 5 – 95%.

During operation
Philips shall not be held responsible or liable for any damage, costs or expenses to the user, resulting from an accident or any other cause during operation if the system is used without due observance of the absolute maximum ratings and other instructions provided by Philips. There must be no ice/water/fog exist or attach on the whole module during the application.

Note:
That warranty is applicable for the Philips Certaflux DLM Slim module for 3 switching cycles per day.
9. Contact details

Philips CertaFlux DLM Slim

Or contact your local Philips sales representative.

Philips ESD support
www.innovationservices.philips.com

Phone : +31- (0) 40 27 46658
Fax : +31 - (0) 40 27 42224

The Philips corporate EMC competence centre is a leading provider of approbation and consultancy services.

If you need support when using Philips CertaFlux DLM Slim module together with Philips Certa Driver, please contact your local Philips sales representative.
Philips will perform the testing of the LED systems to high standards of workmanship. The tests are carried out with reference to the EN/IEC standards, if any, which are regarded by Philips as being of major importance for the application of the lamp gear and the lamp within the fixture for horticultural applications.

The design-in guide, regarding the testing and design in of the LED system provided by Philips, is not an official testing certificate, and cannot be regarded as a document for official release of the fixture. The OEM is liable for the official testing by a certified test body and all markings, such as CE and ENEC marks, on the fixture assembly.

The design-in guide is for information purposes only and may contain recommendations for detecting weak points in the design of the system (lamp – lamp gear – fixture), if any. Specifically mentioned materials and/or tools from third parties are only indicative: other equivalent equipment may be used but it is recommended that you contact Philips for verification. Philips will not be liable for unforeseen interactions of the proposed solutions when applied in the fixtures or applications using these fixtures. Philips has not investigated whether the recommendations are or will in the future be in conflict with existing patents or any other intellectual property right. Philips does not warrant that its recommendations are technically or commercially the best options.

Since the tests are only performed on one particular fixture provided by the customer, it will be treated as a prototype. This means that there is no statistical evidence regarding later production quality and performance of the lamp – lamp gear – fixture system. As Philips does not have control over manufacturing of the fixtures, Philips cannot be held liable for the fixture assembly. Philips will not accept claims for any damage caused by implementing the recommendations.
No warranty whatsoever may be claimed by the OEM with regard to the content and/or quality of the design-in guide or any other advice, or the conclusions and/or recommendations in the design-in guide or any other document, either express or implied, and Philips expressly disclaims any implied warranties of any kind, including without limitation any warranties of satisfactory quality, fitness for a particular purpose or non-infringement and any warranties regarding the design-in guide or any other advice or the use of the results of any activity performed while testing the fixture with respect to its correctness, quality, accuracy, completeness, reliability, performance or otherwise. The OEM expressly agrees that test design-in guides are provided by Philips on an ‘as is’ basis and an ‘as available’ basis at customer’s sole risk and expense. Philips shall not be liable for any lost profits or lost savings, indirect, incidental, punitive, special, or consequential damages whether or not such damages are based on tort, warranty, contract, or any other legal theory – even if Philips has been advised, or is aware, of the possibility of such damages. The OEM must bring any claim for damages within ninety (90) days of the day of the event giving rise to any such claim, and all lawsuits relative to any such claim.